

Description and Validation of the CMEMS Near-Real-Time Wave Products derived from altimetry and SAR measurements E. Charles, R. Husson, A. Mouche, N. Taburet, G. Dodet, H. Wang

A – Near-Real-Time Wave Service

1. Types of products

lfremer

Level 3 SPC

Extracted from Sentinel-1 wave SPeCtra (SPC). Swell integral parameters along track and along swell propagation track from storm source to the coast: significant wave height, peak direction and peak period, all quality flagged. Energy model used for dissipation along propagation follows [Ardhuin et al. 2009]. Observations available individually or grouped by swell event.

Level 3 SWH

Mono-mission 1Hz along-track significant wave height available for each mission, edited, inter-calibrated between altimeter missions and with respect to in-situ measurements and noise-filtered (EMDbased method, Quilfen and Chapron 2019).

Level 4 SWH

Product ID:

Multi-mission gridded 2°x2° significant wave height fields merging all available Level 3 data into an estimate of the instantaneous wave field at 12UTC daily and 0 m daily statistics (mean, maximum, standard deviation, number of observations).

B - Validation

n².km]

 \geq

In short

echarles@groupcls.com

rhusson@groupcls.com

Contact:

 10^{-1}

10⁻² [Feb-Aug2019]

Sentinel-3A

Sentinel-3B

10-2

Jason-3

10-3

1. SAR irregularly gridded waves

L3 SPC products are compared against quality flagged in situ measurements (based on time consistency) and co-located WWIII[®] numerical wave model outputs. Illustrated here for an extra-tropical storm (more in [Wang et al. 2019]).

Locations of each wave observation part of the considered swell field. Color code indicates the time of the observations. Grey dots are data considered as bad quality when using the flag included in the product. The star location indicates the location of the buoy used for validation below (Stratus-32012). At refocusing time, the blended Ascat winds confirms " occurrence of intense winds (not shown)

WAVE_GLO_WAV_L3_SPC_NRT_OBSERVATIONS_014_002

WAVE_GLO_WAV_L3_SWH_NRT_OBSERVATIONS_014_001

WAVE_GLO_WAV_L4_SWH_NRT_OBSERVATIONS_014_003

Product and documentation: <u>http://marine.copernicus.eu</u>

Animation and cal/val reports: <u>http://satwave-report.cls.fr</u>

2. Altimetry significant wave heights

L3 and L4 SWH products are compared to in-situ measurements from 114 moorings (CMEMS InSitu-TAC) during the whole year 2018. Buoy data are compared to the average of L3 collocated values (within 50 km / 30 min of buoy record) and to the daily L4 instantaneous value.

Copernicus Marine Service

Sentinel-3A

Jason-3

AltiKa

2. Mission integration timeline

JUN

2017

MAR

2018

		Nb of match-up	Bias	RMSE	SI	R
Year-2018	L3 Jason-3	1700	8 cm	5 cm	10%	0.99
comparison	L3 Sentinel-3A	1569	7 cm	5 cm	10%	0.99
with in-situ:	L3 AltiKa	1667	9 cm	6 cm	10%	0.99
	L3 CryoSat-2	1488	6 cm	5 cm	10%	0.99
	L4 multi-mission	19 416	9 cm	29 cm	25%	0.86

Example at the Gascogne buoy (April 2018)

Significant wave height, peak wavelength and peak direction given by the L3 CMEMS SAR products at the buoy location compared to the WW3 model and in situ measurements

Impact of EMD noise-filtering on L3 SWH power spectra

Unfiltered data (dash lines) are contaminated by noise at scales ······ Lanczos denoising — EMD denoising lower than 100 km. Lanczos denoising method (dotted lines), ----- No denoising applied to L3 SWH since Apr-2019 version, removes all fluctuations at scales smaller than 60km, therefore suppressing meso-scale signal of interest. This excessive smoothing is not present anymore with the EMD based method (solid lines). With an integration planned for Dec-2019 version, the EMD method allows to denoise the SWH down to scales of the order of 25km, where the signal to noise ratio is too low to recover the underlying signal (more details in Quilfen and Chapron, 2019) Wavenumber [km⁻¹]

References

- Ardhuin, F., B. Chapron, and F. Collard. "Observation of Swell Dissipation across Oceans." Geophys. Res. Lett 36 (2009).
- Wang H., A. Mouche, R. Husson, B. Chapron, A. Grouazel and J. Zhu. "Assessment of a new dataset for ocean global swells based on Sentinel-1 Wave Mode measurements". Draft paper
- Quilfen, Y. and B. Chapron. Ocean Surface Wave-Current Signatures From Satellite Altimeter Measurements. Geophys. Res. Lett 46 (2019)

16th International Waves Workshop | 10-15 Nov 2019 | Melbourne, Australia